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Let M be a compact, connected Riemannian manifold (with or without bound- 
ary); we study the logarithmic Sobolev constant for stochastic Ising models on 
M z'. Let {A} be a sequence of cubes in Za; we show that the logarithmic 
Sobolev constant for the finite systems on M "t shrinks at most exponentially fast 
in I AI ~a- **/a (d >>. 2). which is sharp in order for the classical Ising models with 
M = [ - 1, 1 ]. Moreover, a geometrical lemma proved by L. E. Thomas is also 
improved. 
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1. I N T R O D U C T I O N  

In recent years, a number  of  papers have studied the logari thmic Sobolev 
constant  and the spectral gap for lattice spin systems (see refs. 11 and 12 
and references therein). It is shown in ref. 12 that  the logari thmic Sobolev 
inequality fails for an infinite lattice system whenever the phase transitions 
occur. So, in the phase coexistence region, what  we are mainly interested 
in is the asymptot ic  behavior  of  these two constants  for finite-volume spin 
systems as the volume goes to the full lattice space. This topic was studied 
by several authors  for the classical Ising models with single spin space 
{ - 1 , 1 } .  For  example, ref. 18 proved that the logari thmic Sobolev 
inequality always holds for one-dimensioal  systems, and the upper bound  
and the lower bound  of  the spectral gap for finite-volume systems were 
obtained, respectively, in refs. 13 and 10, which then were improved in 
ref. 9 for d = 2 by using the theory of  surface tension developed in ref. 3. 
Moreover ,  the logari thmic Sobolev constant  for finite-volume systems with 
discrete spins was also studied in recent work. 1171 
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In this paper, we study the logarithmic Sobolev constant and the 
spectral gap for finite-volume spin systems with a compact Riemannian 
manifold as single spin space. The resulting estimates are quite similar to 
those for the discrete spin case. Roughly speaking, let A be a cube in Za; 
then the logarithmic Sobolev constant for spin systems with volume A 
shrinks at most exponentially fast in [A[ ~a-lva (d~>2). Moreover, for the 
classical Ising model with single spin space [ - 1 ,  1], the corresponding 
spectral gap does decay in this order when the temperature is low enough. 

Let M be a compact, connected Riemannian manifold with or without 
boundary, and let J =  {J~: ~ : ~ A  ~ Z  a} be a shift-invariant, smooth 
potential with range R >~ 1. That is, for each A c Z a, JA ~ C~(MZa), which 
depends only on the coordinates in A, JA +,, = J,J ~ 0 . . . .  u E Z a, where 0 
denotes the natural shift on Z a, and J~, = 0 if d ( A ) : =  sup ...... A [U--t'l > R, 
where 1.1 is the Euclidean norm. Appoint J o  = 0, for u~  Z a, let H, ,=  
fl~.,x~,,JA (f l>0) ,  and define L~  by 

L ~ , f =  ~ ( A , , f - ( V , , H , , , V , f ) )  
It ~ Z d 

for a cylindrically smooth function f ,  where A,, and V,, refer, respectively, 
to the Laplace-Beltrami and gradient operators on the uth manifold. 
Then the set of all reversible measures for the L~_-diffusion process (with 
reflecting boundary if aM # ~ )  coincides with that of all Gibbs states with 
potential flj.c2~ 

We say that a logarithmic Sobolev inequality holds with respect to a 
Gibbs state p if there exists c~ > 0 such that 

, ~< 2 112) +It(f 2) l ogp( f ' - )  It(f" logJ'-)  ~ lt (,,~z,' IIV,,J' 

holds for all cylindrically smooth f ,  where p ( f ) = ~ f d p .  The logarithmic 
Sobolev constant, denoted by cc(L~_), is the maximum ofT. 

It is known that the Gibbs state uniquely exists and ~(L.~)>0 
provided d =  1 or fl is sufficiently smallJ 2"7.tn'n2"lS't6~ So, we will be mainly 
restricted to the case that d~> 2 and fl is large enough. 

Let v be the volume element on M and let A be a cube in Z a with side 
length l >t 1. For y ~ M "~', define 

H.ll . , , (x)=fl  ~ JF(XXT) ,  x e M  "~' 
F ~  Z d 
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Let 

L,Ily= ~ (A.-V.HAly) ,  dtZAly=Z~llyexp(-H,lly) dv "j 
I R E / |  

where ZAly = [M., exp( -- H, t ly) dv l~. Then the LA 1y-diffusion process (with 
reflecting boundary if O M v ~ )  is reversible with respect to the unique 
stationary measure PAly. Denote by ~(LAty) the logarithmic Sobolev con- 
stant with respect to P~,l.,,, which is described as the largest ~ such that 

, ( ) /t,,i.,,(f-log f - )  ~<~PAI:, ~ [[V,,fll-' +p, , l y ( f  2) loglc, ty( f  2) (1.1) 
f l E A  

holds for all f E  C '~- (M"). 
Next, for the free boundary case, let 0~(L,) be defined as ~(L~fl,.) upon 

replacing H,II;. by H A = fl Y~r=A Jr -  
For f e  C(M ~ ), let J ( f )  = max f -  minf .  Define 2 = ~, ,  ~ o. t~l >/-, J(J,,) 

and let So(//) be the logarithmic Sobolev constant referring to A o -  flVoJIol. 
Since M is compact, ~o(fl)> 0 for all fl (see refs. 1, 2, and 14 for detailed 
estimates). One of the main results of this paper is the following. 

Theorem 1.1. For d~>2 we have 

ct(Lj) >1 ~o(fl) exp[ -2fl2Rdcd(l + 1 )d- I ] 

c((LAl,.)>~O~o(fl)exp[-2fl2Rd(1 +Ca)(l+ l)d- l] ,  y ~ M  A' 

where ca = [1 + ( d -  l ) - t ] [ ( d  - 1 ) l / ~ d - I ) + ( d  - 1) -L ] ~<4. 

It should be pointed out that the same type of estimation may be 
obtained by using the method of ref. 17, in which discrete spins were con- 
sidered, but we prefer to go along a slightly different line, for which the 
resulting estimates (Theorem 1.1 ) are finer and the idea is also very natural. 
In contrast with the expected result by using the method of ref. 17, an 
obvious merit of Theorem 1.1 is that the lower bounds depend on the 
amplitude )~ rather than the uniform norm of the gradient of potential. 

As for the upper-bound estimation, we adopt the Peierls contour argu- 
ment used in rbf. 13. However, since the spin space is now continuous, 
more analysis techniques are necessary. On the other hand, to make the 
Peierls argument available in the present case, we restrict ourselves to a 
specific model for which the phase transitions occur at low temperatures. (4) 
Let M = [ - 1 , 1 ]  and 

(--flx,x~, if A = {u, v} with [u-v]  = 1 
J , (x )  = .  ~O otherwise ( 1.2 ) 
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Define 

For given cube A c Z d with side length l, let 

HA(X) = - -  ~ fix.x,, 
u,t, EA,[u--v[= 1 

0 OH A O ) 
LA = u~A ~ 

( ,  

Z A = 1  exp(--HA(x))  dx J[ - - I , I ]  A 

JxA(dx) = Z~  I exp(--HA(X)) dx 

Then the spectral gap for the reflecting LA-diffusion process is 

gap(LA ) = inf{pA( IIVAf II 2): f e  C l(E -- 1, 1 ] " )  

with PA(f)  = 0 and p . ( f - ' )  = 1 } 

where IW , , f  II "- = Z,, ~..,(Of/Ox,) 2. 
Note that gap(LA)>~o~(LA); then the next result shows that the 

estimate given in Theorem 1.1 can be sharp in order. 

T h e o r e m  1.2. For model (1.2), there exist ~ > 0  and c ( f l )>0  such 
that 

gap(L A) ~< c(fl) exp[ - ~  log(fl/log fl)(l + 1 ) a - l ]  

holds for all l > 1 and sufficiently large ft. 

A referee has pointed out that the dependence on fl of the above upper 
bound is different from that of the lower bound given in Theorem 1.1. So 
it is not sure yet whether this upper bound is also optimal in fl for the 
present model. 

2. PROOF OF T H E O R E M  1.1 

The idea of the proof is in some sense a combination of the methods 
used in refs. 17 and 18. To complete the proof, we need some lemmas. The 
first three are similar to those given in ref. 17. 
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L e m m a  2.1. Let M~ and M2 be two compact Riemannian 
manifolds; for Vi~ C2(Mi), let L~=/I~+ViV~, where di and V~ refer to the 
corresponding operators on M~ (i = 1, 2). Define 

Lf (x , y )=Ll f ( . , y ) ( x )+L2 f ( x , .  )(y), f~C2(MIxM2)  

Then ~(L) = min{~(Ll), ~(L2)}. 

Next, note that for all ~t e # ( M )  and positive f e  C(M), 

fg f l o g  ~ dlt=inf{F,(flogf - f l o g  t - f  + t): t >0} 

and f log f - - f  log t - f +  t ~> 0 for all t > 0. Then the next lemma follows 
from (1.I) (see ref. 2). 

L e m m a  2.2. For U,V~C2(M), let L~=A+VU, L2=zl+VV. 
Then ~(L~) ~>exp[ -6(  U -  II)] o~(L2). 

L e m m a  2.3. Let K c R  d be a closed cube with side length r and 
each surface parallel to a coordinate plane. For A c K, let 

F c .q ca Z '1 

L , =  ~" (A,-V,,HA) 
It ~ A r Z d 

Let ~(L..j ) = ~ for A n Z d = ~ ;  then 

~(La)>>.%(fl)exp[--2fl(r + l)d/2], A c K  

Proof. Suppose that A n zd # ~ ;  let 

['A = ~, (d , , - f lV, ,J{ , , } )  
It E A n Z d 

By Lemma 2.1 w.e have ~(/S~)=~o(fl). On the other hand, 

u ~ A n Z d F ~ K ~ Z d, I FI >i 2 

fl 1 ),1 
Y, Z 

u ~ K c ' , Z  d F 3 u , [ F I > ~ 2  

The proof is then completed by Lemma 2.2. II 
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Lemma 2.4. Suppose that d>~2 and LA is defined in Lemma2.3. 
For m e N, let S . , -  x'. ,  d i Then - - / - , , ~ i =  0 " 

o~(LA)>~O~o(fl)exp[-22flRdca(r + l)a'+~/s"], m ~ N  (2.1) 

Proof. (a) Note that d " ' + l / S . , ~ [ d - l , d ] ,  (a+b)"<<.s(a"+b s) for 
s e [ 1 , 2 ]  and a,b>~O, and (1 + X - l ) ( x l / X + x - l )  is decreasing for x > 0 ;  
then 

[(din+ l/S.,)s,,,/s.,+, + (d.,+ I/S., ) -a.,+'/s,,,+~]s,.+,/a.,+' 

~<(1 + S.,/d"'+ l)[ (d"+ l/S.,)Sm/am+' + S, . /d ''+ l ] <~ ca 

(b) Suppose that A c~ Z a ~ ~ ;  for s > 0, let i(s) be the integer part of 
s. We equally divide K into [ i ( s )+1 ]  a many small cubes with side length 
r/[i(s) + 1 ] and each surface parallel to a coordinate plane. Denote by Ki 
(i~< [ i ( s )+  1] a) all the small closed cubes and let A~=A c~K~. Define 

B( s) = { u ~ K: there exist i 4: j  such that 

K~c~ K j ~  ~ and d(u, Kgc~ Kj) < R} 

Then [B(s) c~ Z a] ~< 2Rdi(s)(r + 1 )a- ,. Let 

E 
F =  A t'~ Z ' I , F ~  B(s) # ~ ,  [F[ >~ 2 

We have 

Let 

6(Vs)<<.fl ~ ~ J(Jr)<~2Rd2fls(r + l) a- '  
u e B ( . v J : ~ Z  d F ~  u, IF} ~> 2 

L .s= Y. V,)) 
u E A n Z  d 

By Lemma 2.2 we have 

o~(LA) >1 exp[ --2Rd2fls(r + 1 )a- 1] o~(La..,.) 

(2.2) 

(c) For i~< [ i ( s )+  1 ]a, let A ~ = A i\B(s); then A ~ is contained by a 
cube with side length r/[i(s) + 1 ] - R and each surface parallel to a coor- 
dinate plane (note that A ~ = ~ if r/[i(s)+ 1 ] -  R < 0). Next, note that for 

(2.3) 
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each F ~ A n Z  a with F c a B ( s ) = ~  and IFI >/2, there holds d ( F ) > R  or 
F ~  A" for some i; then 

Ha - V.,.= Z HA;,+fl J{,,} 
u ~ B ( s )  ~ A i 

By Lemma 2.1 and (2.3) we obtain 

~(L , , )>~exp[ -2Rd2 f l s ( r+  l )a- l ]min{~(L.4 , ; ) ,%( f l )}  (2.4) 

By combining this with Lemma 2.3, we have 

[ ( ' ;)] ~(LA)~>%(fl)exp - d 2 f l  2 R s ( r + l ) a - I + ~  1 R + I  

i> %(fl) exp[ - d 2 f l ( 2 R s ( r +  1) a-  i + (r + 1) a s-'1/2)] 

By taking s =  (d (r+ 1)/4R) l/~a+ ii and using (a), we obtain 

0c(L,~)/> %(fl) exp[ - d 2 f l  U a-  i ~/~ a + l ~ Rd/a + l 

x (d u"l+ 'J + d -a/~a+ l~)(r + 1 )a'-/s,] 

/> %(fl) exp[ - 2 2 f l d R d ( r  + 1 )d'-/s~ ] 

Then (2.1) holds for m = 1. 

(d) Suppose that (2.1) holds for some m e N ;  we need only to prove 
it for m + 1. Actually, let A~ be defined in (b); since A,. ~ is contained by a 

cube with side length r / [ i ( s ) + 1 ] - - R ,  the assumption implies 

r 1)a'*' /s" 1 ~ L A, ) >~ %(fl) exp [ - 2Rd2flc ,, ( i( s ~ + l - R + 

/> %(fl) exp[ --2Rd2flca(r + 1 )a,,,+'/s,,, s-a,,,+ '/s,,,] 

By (2.4) and taking 

s = [cad "'+ 1/S,,]s"/s"*~ (r + 1 )l/s,,+, 

and using (a), we get 

_ _  m + I a (LA)>~%( f l ) exp[_2Rd2 f l ( s ( r+  1)a-I +CdS a /s,,,(r + l)a,,,+,/s,,,)] 

>t %(fl) exp[ - 2dR2flc d( r + 1 )a,,,+'-/s,,,. , ] 

Therefore (2.1) holds for m +  1. | 
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Proof of Theorem 1.1. The estimate for the free boundary case 
follows from Lemma 2.4 by letting m --* oo. To estimate ~(LAI:.), let K c  R a 
be the cube with side length l and Kc~ Z a =  A. Then 

6(HAly- HK) <~ fl ~ 5(JF) 
Fc~ K ~ O ,  Fc~ I ~ ~  ~ 

<~fl ~ 2 <~2dR2fl(l+ 1) a - '  
tt~ A,d(u,  OK) < R 

By Lemmas 2.2 and 2.4 we have 

0~( LAly ) >~ exp[ --2dR2fl(l + 1 )a- ~] o~(LK) 

>~ ~o(fl) exp[ --2dR2fl(l + 1 )a-~] 

x exp[ -- 22flRdcd(l + 1 )a"*'/sm] 

Then the proof is completed by letting m ~ ~ .  II 

3. PROOF OF T H E O R E M  1.2 

The basic idea of the proof  is to construct a set of configurations for 
which a smoothed indicator function has small energy. Thus, the key point 
is to construct this set and to estimate its measure. To do this, we first 
construct the set of configurations by relating the present configurations to 
discrete contour ones, then give estimates on the measure of this set by 
using F KG and GKS inequalities; finally, the rest of the proof  follows from 
the method of ref. 13. 

For O c A, let Q be the union of all the closed unit cubes in R d with 
center points in O and each face parallel to a coordinate plane. Denote by 
aO = OQ the boundary of Q. Recall that a Peieris contour is the boundary 
of a simply connected O c A. Let F be the set of all Peierls contours. For 

~ F, let O(~,) denote the simply connected O c A with 0 0  = y and let Q(r) 
be the corresponding Q, and define 

0 + ~ =  {u60(y ) :  d(u, y ) =  1/2} 

O-y= {ue A\O(~): d(u, y )=  1/2} 

~ 7 = 0 + 7 u 0 - 7  

Finally, for u~A, let F(u)={y~F: ueO(y)} .  The following result is an 
improvement of ref. 13, Lemma 2.1. 
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Proposition 3.1. For e~(0,  1), let 

K(e) = e l/z~a- I I v [ 1 - e role- 1~( 1 - e m la -  I ~)/2d] 

If y e F  satisfying lYl < e  IOAI = 2 & ( l +  1) a-s ,  then [yc~OA[ < Ic(e)I)'l- 

To prove Proposition 3.1, we need the following isoperimetric 
inequality. 

L e m m a  3.1. For O c A ,  we have 1001>~2dlOI ~a-lva 

Proof. Simply refer to ref. 10, (3). I 

Proof  o f  Proposi t ion 3.1.  (a) Let O"=81/2('/--1); if ITc~0AI>~0.]),I, 
there exists a face F of OA such that IFc~TI/>0. 171/2d. Without loss 
of generality, we assume that A = [ a , a + l ] a c ~ Z  a and F = { x l =  
a + l + l / 2 }  r~OA. For r e [ a - 1 / 2 ,  a + l + l / 2 ] ,  let Qr={xl=r} ~Q()~). 
Suppose that I Q, I/> 0.2 [71/2d for all r ~ [a - 1/2, a + l + 1/2]; then 

~__ [a+l+ l/2 
IQ(7)I o,,-1/z ]Q,.[ dr>~0.'-(l+ 1)lyl/2d 

By Lemma 3.1 we have 

lyl = IOQ(y)I >i 2d(0.2(1 + 1) b'l/2d)'"- '  ~/" 

= 0 .2(d- - l ) /d  IOAI,/a lYI"~-,i/a 

This implies [Yl >~ a2cd- 11 IOAI = e IOAI, which contradicts the assumption 
of Proposition3.1. Therefore, there must exist r o s [ a - 1 / 2 ,  a + l + l / 2 )  
such that IQ,,,I <0.'-lYl/2d. 

(b) Let 9,' be the boundary of Q(y) c~ {x~ >~ ro}. Note that the projec- 
tion of Q,,+l+l/2 to {xl =ro} is contained by that of f \ O A  to the same 
plane; then 

I?'\OAI >1 I?" \OA]-  IQ,.0] > [Q,,+,+ ,/21-o2 [yl/2d 

>10.( 1 - 0.)  1 ~ l / 2 d  

Therefore 

[7~0A[ < ( 1 - a ( 1 - 0 . ) / 2 d ) l Y [  | 

Given O c A, let 

Jg( O) = { f e  C([0, 1]~ f ( x )  >>. f (  y)  if x,,>~ y,, for all u e O} 
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Next, for y s  [ - - I ,  1] ~ define r~o,. , ,E~([- 1, 1] ~ as follows: 

zro..,.(d.u ) = Ze,.(y ) - l  exp[ - -H  A(x o xy)] dxo 

=f[ exp[ --HA(Xo xy)] dxo, Zo,(y)  _l.~]o 

Then the GKS inequality implies c5"6i 

dx o -= [-I dx . 
u E O  

~o,,(x.)~>0, ueO,  ye [0 ,1 ]  ~ (3.1) 

Lemma 3.2. For O c A ,  we have Z o e J g ( O ) .  

Proof. For uE O, it follows from (3.1) that 

OZo(y) -13 Y. Zo(y) 7to,.. ,,(x,,) 
O Y u  * ,~  o ' :  I -  - t ' l  = ] " 

Lemma 3.3. 

+P E y,,zo(y)~o I 
t, E o :  l u  - t,I = 1 

For O c A ,  u e O ,  and re[O, 1), we have 

f" Zo(xo)  dr .  ~ r exp(2dflr) Zo\ . (xo\ . )  
- - r  

Proof. F o r x o e [ - 1 , 1 ]  ~  

Zo(xo)  <<. exp(2dflr) ~ exp[ -Hl,,i,.(xl.I,.)] dxo,. J[ _ I .  I ] O '  
(3.2) 

Next, 

Z~176 = ;E -t. i ]o"~,,I exp[ - H . j ( x ) ]  dxo,-u M 

= I  exp(fl ~ x,,x,,) 
E - I .  l ] o ' , ~  M 

z,: lit  - -  v[ = 1 

x exp[ -H{,I,.Ix{,ic)] dxo,-,~ ~,,I 

exp(-  Z .,u,) 
- -  1" l ] O " ~ 1 " 1  v: l u - - v l  ~ I 

x exp[ - H  I,,I,.(xI,,j,)] dxo,.~. {.I 
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In the last step we used the integral t ransformat ion x,,= - x , , .  Note  that 
e " + e - " > ~ 2 ;  we have 

Zo\,,(Xo\,,) >~ 2 ft -t .I1 ~ exp[  - Hi,,idxl,,l~) ] dxo,. 

The p roof  is then completed by (3.2). II 

Now, we try to connect  a spin configurat ion x e [ - 1, 1 ] A with Peierls 
contours.  For  x e [ - l ,  1] A and r e [ 0 ,  1), we mark  + or - at u with 
respect to x, > r or x,, ~< r. The  set of  all Peierls contours  determined by x 
is F.'~. := O{u: x , ,>  r}. In contrast  to the case of  spin space { -  1, 1} z,, here 
F'.~. can be equal to F ~. for x ~ y. 

For  r e [0,  1 ), let 

S,. = {x e [ - 1, 1 ]" :  there exists y e F'~. such that  lyl > 0.8 laAI} 

The following lemma is similar to ref. 13, Lemma 2.2. 

Lemma 3.4. Let 6=(fl [OA[)-~; we have llA(Sa) >_- 0.4 for fl suf- 
ficiently large independent  of  A. 

Proof. (a) Fix uoeA; we have I.t,,(x,,o>O)=itA(X,,,<~O)= 1/2. By 
this and Lemma 3.3, lt~,(x,, o > ~) >1 1/2 - e6. Then 

II..1(Sa) >1 ~-~ ec~ -lt.~(x,,o > 6 and ]y] < 0.8 ]OAI 

for all y~F~.nF(uo)) 

>~ � 8 9  Z Z l'.,l(re Fa., .) 
0.8 [O/lJ>h>~2d y ~ F ( i t u ) :  I~,,[=h 

Let 

(3.3) 

For  given y with [Yl = h  <0 .8  [OA[, we have ly\yc~OA[ > (1 - K(0.8)) h. 

A = {(u, t,) e 8+y x 0-y :  l u -  vl = 1} 

Then LAI > (1  -~c(0.8)) h and 

<~ZAt f e x p [ - - H ~ ( x ) ]  ll,d Y ~ FI~-) dx 
" E a ,  i ] e + ~ ,  • E _ l , a ] e - ~ '  • [ - 1, I ] e  ~ " 

H (f;f ~ 
(u.t,)eA - - I  

x ~  e x p [ - - H A ( x ) ]  dx 
Jt -- 1,117" 

(3.4) 
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(b) For A' c A  with ]A'I =s, let G =  {u, v: (u, v)cA'}.  By first using 
the transformation xo(r~,= -Xor and then Lemma 3.3, we have 

(;o'; ~ (,o',;) I : =  1-[ I-I 
{ u , v } E A '  --1 [u ,v)E, ' I \A '  

X f[__[,l]y,, exp[ --HA(x) ] & 

~<exp(4d) alal-"fe e x p ( - 2 f l  ~ x,,x,,)Za(xa)dx a 
O'l]a { u , v ) ~ A '  

Since Za is increasing on [0, 1] a and alva has positive correlations, ~5"6) we 
have 

exp(-2  Z ,x) o 
0'116 Ot, r ) ~ A '  

Note that for each (u, v)~A', 

[{(u', v')~A': {u, v} n {u', t,'} # ~ } ]  ~<4d-1 

We may choose BoA' such that IB]>>.s/4d and for (u,v)#(u',v')~B, 
{ u, v } c~ { u', v'} = s Therefore 

I~Z,,exp'4d) 61AI-"(fol ~] exp(-2flxy)dxdyy/4" (3.5) 

On the other hand, for fl~> 1/2 we have 

f] f] exp(-2flxy) dx dy 

f ] l  = ~ [1 - e x p ( - 2 f l x ) ]  & 

1 

< (2fl)-I + I2/J~-' (2flx)-I & 

= ( 2 f l ) - '  [ 1 + log (2 f l ) ]  
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By (3.4) and (3.5) we obtain 

lt.4(yel-'~)<~exp(4d) ~ alal-"{[l +log(2fl)](2fl)-t} '/4a 
.~" = 0 

~< exp(4d)(fl-l log fl)=a, (3.6) 

for some constant =] > 0 and large ft. 

(c) Note that the number of Peierls contours with lYl=h and 
Uoe O(y) is no more than �89 h (see ref. 13, Proof of Lemma 2.2); 
by (3.3) and (3.6) we obtain 

1 exp(4d) 
It,,(Sa)>~ 9 - e 6  ~. h(3(2d-3))h(fl -~ logfl)~h~>0.4 

_ 2 h >~ 2 d  

for sufficiently large ft. | 

I . e m m a  3.5. Ifl/(l+ 1)>0.6 IlIa-I), then IIA(S~)~>0.4 for largefl. 

Proof. Let 

S ' =  {x: [{ueO+OA: x,,~<O}l/> IO+OAI/2} 

S" = {x: I{uE0+OA: x,,~> 0} [ >/IO+OAI/2} 

Then S ' = - S " ,  S ' w S " = [ - I ,  1] A, and so ltA(S')=ll,j(S")>~I/2. For 
xeSonS ' ,  there exists yEF~ such that 17] >~0.8 )OAT. Note that x~S'  and 

, _ (  1 "~"-' 
IO+OAI >12dl"- - kT~--() IOAI > 0.6 IOAI 

We have 

I~,mOAI<~IOA [ 10+OAI ~<7 
- -  < 0 . 7  IOA( lYl 

2 "=8 

Then the proof of Lemma 3.4 gives 

E E E , , . ,(y r.~ 
. E A  h>~0.81&ll : . '~/ ' (ul : l ; , l=h.I ; ,c~cgAl<7h/8 

(1+1) a ~ Z h(3(2d-3))"(#-'l~ -=:'<~o.1 
h~>0.8 Ic%11 

for some constant a2 > 0 and large ft. Hence ltA(S~) >i 0.5 --//,l(So ~ S')/> 
0.4 for sufficiently large ft. | 
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Lemma 3.6. Let 

~3 = [3 - K(0.8)]/212-- X(0.8)], a4=  [1 -- h'(0.8)]/16d. 

Suppose that 171 ~0~3 IOAI, 17n OAI >_.oq~ [7l, and the length of each contour 
contained in Q(7)" is ~<~4 [7l- To change 7 into contours with length less 
than 0.8 IOAI without changing spins " - "  and spins in O(y)", one must 
replace more than three " + "  by " - "  in O(y) for large l. 

Proof. Suppose that we have replaced just m many " + "  by " - "  in 
0(7) and 7 has been changed into some new contours 7~ ..... 7.,. with 
17,1 <0.8 IOAI, i<~s; then 

17,n71< ~ 17,naAl+(I-~3) 171 
i ~ l  i ~ l  

<x(0.8)  ~ 17~[ +(1  - ~ ) 1 7 [  (3.7) 
i = 1  

Next, let n = [{ue0+y:  the spin at u was changed} [; by (3.7) we have 

lyl ~< ~ ly c~ y,I + n ( 2 d -  l) < (1 - ~ , )  lYl + n ( 2 d -  1 ) + x(0.8) ~. lY, I 
i = l  i = 1  

This implies 

~, 17,1 >--~3 l y l -  n ( 2 d -  1) (3.8) 
i = l  

Let F~ be the union of contours contained in Q(y)" and let F 2 =  
(U?'~)\(FlWy). Note that there are at most 2d many 7~ which are 
connected with 7 by changing one spin. Hence J(U y~)nFt[  <~2dm~4 lYJ. 
Combining this with (3.7) and (3.8), we have 

s 

IF q >/ Y ly,Nyl-2dm~ Jyf 
i = 1  

= ~ (ly, I -  ly, nyl)-2dmo~4 lyl 
i = 1  

> [1 -~,-(0.8)] y, ly, I - (1 - ~ 3  +2dm~4) lyl 
i = l  

{~312 - K(0.8)] - 1 - 2dma4} Irl - [ 1 - x ( 0 . a ) ] ( 2 d -  1)n 
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Note that  m t> [ 1/(2d)] IF2[ and m >1 17; we have 

m j > e 3 1 2 - K ( 0 . 8 ) ] - l [ 7 [ =  4 [ 1 - t c ( 0 . 8 ) ]  [y[ > 3  
4 d +  2d~, I~'l 3 2 d +  [ ]  - K(0.8)] I~,l 

for large l. | 

Proof o f  Theorem "1.2. 
and large ft. 

(a) Since S~ c R A is a 
./'e C'~(R A) such that [IVmf I] ~ 2/r and 

i l  if xeSD, .  > " 
1 >~f(x)  0 if d(x,  S o) ~ r 

0 otherwise 

Note that  d(S,., So) ~- r, then ]'] s, - 0. Therefore 

~< /~A(IIV,fl[ 2) .< 4/tm(S',ic~So) 
gap(LA ) , , "~ , ,. ,. z 

/ t ,~ ( f - ) - -gA( f ) -  r-[/tA(So)-/t,~(S,.) ] 

By Lemmas 3.4 and 3.5, we have 

~" c 2 gA(So) --IrA(S,.) >~ 0.4 -- 0.6 ~ = 0.04 

for sufficiently large ft. Hence there exists c t ( f l )>  0 such that  

gap(L,f) ~< cl(fl) -"  ' r -ll.l(S,. n So) (3.9) 

for large ft. 

(b) For  x ~  [ - 1 ,  1]A, we call 7 ~ F ~  a good contour  if 

b'l >/0.8 [OA[, [ynOAI > ~c(~3)I~'1 

and 

max{ I)',l: )',~ F. ~ ) , ,c  Q(y)o} ~<e4 I)'1 

We need only to prove the result for large 1 

bounded domain,  for r e ( 0 ,  6] we choose 

Let 0~ 5 =0.8  min{cq, 1 -K(0t3) } and set 

T 1 = {x~ So: there exists a good contour  in F~ 

T 2 = { x: there exists ~, ~ F ~ such that  ly\OAI >t ~510A I} 

For x ~  T '  i c~ So, there exists y ~ F ~ such that ]y[ >~0.8 JOA] and either 
[~,c~0A[--.<~(~3) ly[ or there exists y ' ~ F  ~ and 7 ' c Q ( y ) "  satisfying 
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[7'l >~C~a lY[. Hence, there exists y" e F  ~ such that I/'\0AI ~>~5 10AI. There- 
fore T' 1" n So c T~. Thus 

l tA(S~ASo)<~IIA(SoAT'~)+I tA(S '~ATI)<~/aA(T2)+pA(S 'rnTI)  (3.10) 

(c) Obviously, the proof of Lemma 3.4 gives (replacing 6 by 0) 

m,(T2)  ~ < Y. ~ A ( y ~ r  ~ ) 
7: D'\c~AI ~>~5 IOAI 

~<�89 d y' h(3(2d- -1) )h( f l - l log f l )  ~*h 
h >_. ~5 IOAI 

<~ c2(fl) exp[ - ~ 7  log(flflog f l)(l+ 1 )a- ,] (3.11 ) 

for some c2(fl), ~6, and ~7 > 0. 
Next, for x e Tj n S',[, there exists a good contour 7 e F~ and the length 

of each contour in F'~. is <0.8 laAI. Note that K(%)1> ~3 and by Proposi- 
tion 3.1, lTI >~3 [0AI; Lemma 3.6 implies for large l that 

T~ n S~' c { there exist three different sites 

u t , u,_, u3 such that x,,~ ~ (0, r], i <~ 3} 

By Lemma 3.3 we have 

IrA(T, n S:?)~< ( [A[ ) r3exp(6dflr)<~exp(6d)(l+ 1 )3'1 r 3 (3.12) 

Take r = e x p [ - - ~ 7 1 o g ( f l / l o g f l ) ( l + l ) d - ~ ] ;  then r < 6  for large I. By 
(3.9)-(3.12), we obtain 

gap(L) ~< cl(fl) exp(6d)(l + 1 )3d 

• exp[ -- ~71og(fl/Iog fl)(l + I )a- t] 

+ c,(fl) cz(fl) exp[ - ~ 7  log(fl/log fl)(l + 1 )d- ,  ] 

<<. C(fl) exp[ - 7  log(fl/log f l)(l+ 1 )a - i ]  

for some c(fl)> 0 and 0~ > O. II 
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